Abstract

Research Article

A Water-soluble Form of Dihydroquercetin Reduces LPS-induced Astrogliosis, Vascular Remodeling, and mRNA VEGF-A Levels in the Substantia Nigra of Aged Rats

Elena S Alalykina, Tatyana N Sergeeva, Michail A Ananyan*, Ivan A Cherenkov and Valeriy G Sergeev

Published: 16 February, 2024 | Volume 8 - Issue 1 | Pages: 014-019

Background: The age-dependent sporadic form of PD is characterized by the degeneration of dopaminergic (DA) neurons in the Substantia Nigra (SN), gliosis, and vascular changes. Vascular changes may contribute to the onset of the disease and exacerbate the neurodegenerative process, as some vascular changes occur before the onset of neuronal loss. To demonstrate the anti-neuroinflammatory efficacy of a new compound, a water-soluble form of dihydroquercetin (DHQ-WF), we studied the structural changes of microcirculatory vasculature, astroglial GFAP, and vascular endothelial growth factor –A (VEGF-A) mRNA expression in the SN of young and old rats after unilateral nigral treatment by lipopolysaccharide (LPS) and oral administration of DHQ-WF.
Materials and methods: The experiments were performed on 18 young (8 weeks - 10 weeks old; 250 g - 320 g) and 18 old (18 months - 19 months old; 390 g - 450 g) male Vistar rats. Young and adult rats from the experimental groups were stereotactically injected with 2 μL LPS solution (LPS from Escherichia coli; 0,01 μL/mL) into one side of the SN. Control young and old rats were similarly injected with 2 μL sterile saline. Half of the animals in both the control and experimental groups (6 animals in each group) received a 2 ml solution containing DHQ-WF at a concentration of 3 mg/ml orally every day. After 8 weeks, brains were harvested and serial cryostat sections were prepared for histochemical (FITC-labeled tomato lectin), immunohistochemical (anti-GFAP Antibody, Cy3 Conjugate) staining, and real-time PCR (mRNA VEGF-A).
Results: Eight weeks after LPS injection into the SN, a significant excess of areas occupied by cell bodies and processes of astroglial cells, the density of microcirculatory vessels, and mRNA VEGF-A expression was observed in old animals compared to control old animals and young LPS-treated rats.  Oral administration of DHQ-WF to LPS-treated rats resulted in a significant reduction of these parameters in old animals.
Conclusion: Injection of LPS into rat SN induces neuroinflammation and vascular angiogenesis, maximally expressed in old animals.  Administration of DHQ-WF for 8 weeks significantly reduces these LPS-induced changes. DHQ-WF may be an effective treatment for reducing the effects of neuroinflammation in the aging brain.

Read Full Article HTML DOI: 10.29328/journal.jnnd.1001092 Cite this Article Read Full Article PDF

Keywords:

Neuroinflammation; Astroglia; Microvasculature; Ageing; Water-soluble form of dihydroquercetin

References

  1. Duggan M, Torkzaban B, Ahooyi TM, Khalili K, Gordon J. Age-related neurodegenerative diseases. J Cell Physiol. 2020 Apr;235(4):3131-3141. doi: 10.1002/jcp.29248. Epub 2019 Sep 25. PMID: 31556109; PMCID: PMC7029396.
  2. Collier TJ, Kanaan NM, Kordower JH. Aging and Parkinson's disease: Different sides of the same coin? Mov Disord. 2017 Jul;32(7):983-990. doi: 10.1002/mds.27037. Epub 2017 May 18. PMID: 28520211; PMCID: PMC5844262.
  3. Michel PP, Hirsch EC, Hunot S. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron. 2016 May 18;90(4):675-91. doi: 10.1016/j.neuron.2016.03.038. PMID: 27196972.
  4. McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov Disord. 2008 Mar 15;23(4):474-83. doi: 10.1002/mds.21751. PMID: 18044695.
  5. Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, Adler CH, Beach TG, Serrano GE, van Westen D, Londos E, Cenci MA, Hansson O. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology. 2015 Nov 24;85(21):1834-42. doi: 10.1212/WNL.0000000000002151. Epub 2015 Oct 28. PMID: 26511451; PMCID: PMC4662706.
  6. Paul G, Elabi OF. Microvascular Changes in Parkinson's Disease- Focus on the Neurovascular Unit. Front Aging Neurosci. 2022 Mar 10; 14:853372. doi: 10.3389/fnagi.2022.853372. PMID: 35360216; PMCID: PMC8960855.
  7. Padel T, Özen I, Boix J, Barbariga M, Gaceb A, Roth M, Paul G. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol Dis. 2016 Oct; 94:95-105. doi: 10.1016/j.nbd.2016.06.002. Epub 2016 Jun 7. PMID: 27288154.
  8. Elabi OF, Cunha JPMCM, Gaceb A, Fex M, Paul G. High-fat diet-induced diabetes leads to vascular alterations, pericyte reduction, and perivascular depletion of microglia in a 6-OHDA toxin model of Parkinson disease. J Neuroinflammation. 2021 Aug 10;18(1):175. doi: 10.1186/s12974-021-02218-8. PMID: 34376193; PMCID: PMC8353816.
  9. Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet. 1999 Mar 20;353(9157):981-2. doi: 10.1016/S0140-6736(99)00641-8. PMID: 10459912.
  10. Barcia C, Bautista V, Sánchez-Bahillo A, Fernández-Villalba E, Faucheux B, Poza y Poza M, Fernandez Barreiro A, Hirsch EC, Herrero MT. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm (Vienna). 2005 Sep;112(9):1237-48. doi: 10.1007/s00702-004-0256-2. Epub 2005 Jan 24. PMID: 15666038.
  11. Wang H, Keiser JA, Olszewski B, Rosebury W, Robertson A, Kovesdi I, Gordon D. Delayed angiogenesis in aging rats and therapeutic effect of adenoviral gene transfer of VEGF. Int J Mol Med. 2004 Apr;13(4):581-7. PMID: 15010860.
  12. Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016 Aug;12(8):439-54. doi: 10.1038/nrneurol.2016.88. Epub 2016 Jul 1. PMID: 27364743.
  13. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006 May;7(5):359-71. doi: 10.1038/nrm1911. PMID: 16633338.
  14. Wada K, Arai H, Takanashi M, Fukae J, Oizumi H, Yasuda T, Mizuno Y, Mochizuki H. Expression levels of vascular endothelial growth factor and its receptors in Parkinson's disease. Neuroreport. 2006 May 15;17(7):705-9. doi: 10.1097/01.wnr.0000215769.71657.65. PMID: 16641673.
  15. Yang R, Yang X, Zhang F. New Perspectives of Taxifolin in Neurodegenerative Diseases. Curr Neuropharmacol. 2023;21(10):2097-2109. doi: 10.2174/1570159X21666230203101107. PMID: 36740800; PMCID: PMC10556370.
  16. Zhang X, Lian X, Li H, Zhao W, Li X, Zhou F, Zhou Y, Cui T, Wang Y, Liu C. Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitroand in silico Chin Herb Med. 2022 Sep 1;14(4):554-562. doi: 10.1016/j.chmed.2021.03.002. PMID: 36405054; PMCID: PMC9669345.   
  17. Varlamova EG, Uspalenko NI, Khmil NV, Shigaeva MI, Stepanov MR, Ananyan MA, Timchenko MA, Molchanov MV, Mironova GD, Turovsky EA. A Comparative Analysis of Neuroprotective Properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci. 2023 Jul 14;24(14):11436. doi: 10.3390/ijms241411436. PMID: 37511195; PMCID: PMC10380368.
  18. Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS One. 2011;6(11):e27385. doi: 10.1371/journal.pone.0027385. Epub 2011 Nov 16. PMID: 22110636; PMCID: PMC3217985.
  19. Lopes PC. LPS and neuroinflammation: a matter of timing. Inflammopharmacology. 2016 Oct;24(5):291-293. doi: 10.1007/s10787-016-0283-2. Epub 2016 Sep 19. PMID: 27645902.
  20. Li B, Wang M, Chen S, Li M, Zeng J, Wu S, Tu Y, Li Y, Zhang R, Huang F, Tong X. Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. Biomed Res Int. 2022 Nov 9; 2022:3263446. doi: 10.1155/2022/3263446. PMID: 36408278; PMCID: PMC9668451.
  21. Pizza V, Agresta A, D'Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011 Aug;10(5):621-34. doi: 10.2174/187152711796235014. PMID: 21631404.
  22. Desjardins M, Berti R, Lefebvre J, Dubeau S, Lesage F. Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiol Aging. 2014 Aug;35(8):1947-55. doi: 10.1016/j.neurobiolaging.2014.01.136. Epub 2014 Jan 31. PMID: 24612672.
  23. Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci. 2007 Jun 15;257(1-2):62-6. doi: 10.1016/j.jns.2007.01.015. Epub 2007 Feb 23. PMID: 17320909; PMCID: PMC1989116.
  24. Casey MA, Feldman ML. Aging in the rat medial nucleus of the trapezoid body. III. Alterations in capillaries. Neurobiol Aging. 1985 Spring;6(1):39-46. doi: 10.1016/0197-4580(85)90070-3. PMID: 4000384.
  25. Burns EM, Kruckeberg TW, Gaetano PK. Changes with age in cerebral capillary morphology. Neurobiol Aging. 1981 Winter;2(4):283-91. doi: 10.1016/0197-4580(81)90037-3. PMID: 7335147.
  26. Bell MA, Ball MJ. Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol. 1981;53(4):299-318. doi: 10.1007/BF00690372. PMID: 7223373.
  27. Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep. 2022 Jan 12;12(1):619. doi: 10.1038/s41598-021-04712-8. PMID: 35022482; PMCID: PMC8755738.
  28. Murugesan N, Demarest TG, Madri JA, Pachter JS. Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol Aging. 2012 May; 33(5):1004.e1-16. doi: 10.1016/j.neurobiolaging.2011.09.022. Epub 2011 Oct 21. PMID: 22019053; PMCID: PMC3266473.
  29. Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH, Burnett MS, Epstein SE. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol. 2011 Aug;31(8):1748-56. doi: 10.1161/ATVBAHA.111.227314. Epub 2011 May 26. PMID: 21617137; PMCID: PMC3141082.
  30. Schallert T. Aging-dependent emergence of sensorimotor dysfunction in rats recovered from dopamine depletion sustained early in life. Ann N Y Acad Sci. 1988; 515:108-20. doi: 10.1111/j.1749-6632.1988.tb32972.x. PMID: 3364880.
  31. Storkebaum E, Carmeliet P. VEGF: a critical player in neurodegeneration. J Clin Invest. 2004 Jan;113(1):14-8. doi: 10.1172/JCI20682. PMID: 14702101; PMCID: PMC300888.
  32. Villar-Cheda B, Sousa-Ribeiro D, Rodriguez-Pallares J, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Aging and sedentarism decrease vascularization and VEGF levels in the rat substantia nigra. Implications for Parkinson's disease. J Cereb Blood Flow Metab. 2009 Feb;29(2):230-4. doi: 10.1038/jcbfm.2008.127. Epub 2008 Oct 29. PMID: 18957989.
  33. Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 2012 Nov;15(6):1110-26. PMID: 23653839; PMCID: PMC3646220.
  34. Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna). 2012 Jan;119(1):59-71. doi: 10.1007/s00702-011-0684-8. Epub 2011 Jul 12. PMID: 21748523; PMCID: PMC3352316.
  35. Elabi O, Gaceb A, Carlsson R, Padel T, Soylu-Kucharz R, Cortijo I, Li W, Li JY, Paul G. Human α-synuclein overexpression in a mouse model of Parkinson's disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep. 2021 Jan 13;11(1):1120. doi: 10.1038/s41598-020-80889-8. PMID: 33441868; PMCID: PMC7806665.
  36. Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 2012 Nov;15(6):1110-26. PMID: 23653839; PMCID: PMC3646220.
  37. Yasuhara T, Shingo T, Kobayashi K, Takeuchi A, Yano A, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci. 2004 Mar;19(6):1494-504. doi: 10.1111/j.1460-9568.2004.03254.x. PMID: 15066146.
  38. Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci. 2018 May 4;19(5):1362. doi: 10.3390/ijms19051362. PMID: 29734653; PMCID: PMC5983623.
  39. Ransom BR, Ransom CB. Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol. 2012;814:3-7. doi: 10.1007/978-1-61779-452-0_1. PMID: 22144296.
  40. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012 Jul;122(7):2454-68. doi: 10.1172/JCI60842. Epub 2012 Jun 1. PMID: 22653056; PMCID: PMC3386814.
  41. Liddelow SA, Barres BA. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity. 2017 Jun 20;46(6):957-967. doi: 10.1016/j.immuni.2017.06.006. PMID: 28636962.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?