Review Article
Do genes matter in sleep?-A comprehensive update
Rajib Dutta*
Published: 05 March, 2020 | Volume 4 - Issue 1 | Pages: 014-023
Sleep is considered as a complex process in human beings and is least understood mechanism. Role of sleep in synaptic plasticity remains a debatable topic till date. Sleep is influenced by genetic background of the individual. EEG done in human sleep showed strong influence of genetic factors. A handful of familial analyses involving specific gene loci and twin studies has been done in this regard. In this review article focused discussion on genetic contribution to sleep phenotypes, twin and familial linkage studies and effect of genetic variation on sleep will be covered
Read Full Article HTML
DOI: 10.29328/journal.jnnd.1001029
Cite this Article
Read Full Article PDF
Keywords:
Sleep; Gene loci; Genetics
References
- Veatch OJ, Malow BA. Review of the Genetic Basis of Sleep and Sleep Disorders. JAMA Neurol. 2014; 71: 1058-1060.
- Van Beijsterveldt CEM, Molenaar PCM, deGeus EJC, Boomsma DI. Heritability of human brain functioning as assessed by electroencephalography. Am J Hum Genet. 1996; 58: 562-573. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8644716
- Landolt HP. Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res. 2011; 193: 51-61. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21854955
- Ambrosius U, Lietzenmaier S, Wehrle R, Wichniak A, Kalus S, et al. Heritability of sleep electroencephalogram. Biol Psychiatry. 2008; 64: 344-348. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18405882
- De Gennaro L, Marzano C, Fratello F, Moroni F, Pellicciari MC, et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol. 2008; 64: 455-460. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18688819
- Tafti M, Petit B, Chollet D, Neidhart E ,de Bilbao F, et al. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat Genet. 2003; 34: 320-325. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12796782
- Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, et al. Retinoic acid signaling affects cortical synchrony during sleep. Science. 2005; 310: 111-113. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16210540
- Ashbrook LH, Krystal AD, Fu YH, Ptáček LJ. Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology. 2020; 45: 45-54. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31400754
- Frank MG. The mystery of sleep function: current perspectives and future directions. Rev Neurosci. 2006; 17: 375-392. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17139839
- Mignot E. Why we sleep: the temporal organization of recovery. PLoS Biol. 2008; 6: e106. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18447584
- Crocker A, Sehgal A. Genetic analysis of sleep. Genes Dev. 2010; 24: 1220-1235.
- Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci. 2009; 10: 549-560. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19617891
- Andretic R, Franken P, Tafti M. Genetics of sleep. Annu Rev Genet. 2008; 42: 361-388. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18983259
- Allada R, Siegel JM. Unearthing the phylogenetic roots of sleep. Curr Biol. 2008; 18: R670-R679. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18682212
- Partinen M, Kaprio J, Koskenvuo M. Genetic and environmental determination of human sleep. Sleep. 1983; 6: 179-185. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6684786
- Gedda L, Brenci G. Twins living apart test: progress report. Acta Genet Med Gemellol (Roma). 1983; 32: 17-22. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6684862
- Gedda L, Brenci G. Sleep and dream characteristics in twins. Acta Genet Med Gemellol (Roma). 1979; 28: 237-239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/575840
- Barclay NL, Eley TC, Buysse DJ. Diurnal preference and sleep quality: same genes? A study of young adult twins. Chronobiol Int. 2010; 27: 278-296. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20370470
- Hublin C, Partinen M, Koskenvuo M, Kaprio J. Heritability and mortality risk of insomnia- related symptoms: a genetic epidemiologic study in a population- based twin cohort. Sleep. 2011; 34: 957-964. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21731146
- Rao WW, Li W, Qi H. Sleep quality in medical students: a comprehensive meta-analysis of observational studies. Sleep Breath. 2020; 10. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32072469
- Zung WW, Wilson WP. Sleep and dream patterns in twins. Markov analysis of a genetic trait. Recent Adv Biol Psychiatry. 1966; 9: 119-130. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/4300786
- Linkowski P, Kerkhofs M, Hauspie R. Genetic determinants of EEG sleep: a study in twins living apart. Electroencephalogr Clin Neurophysiol. 1991; 79: 114-118. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1713824
- Linkowski P, Kerkhofs M, Hauspie R. EEG sleep patterns in mana twin study. Electroencephalogr Clin Neurophysiol. 1989; 73: 279-284. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2477214
- Kuna ST, Maislin G, Pack FM. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep. 2012; 35: 12231233. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22942500
- Barclay NL, Gregory AM. Quantitative genetic research on sleep: a review of normal sleep, sleep disturbances and associated emotional, behavioural, and health- related difficulties. Sleep Med Rev. 2013; 17: 29-40. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22560641
- Linkowski P. EEG sleep patterns in twins. J Sleep Res. 1999; 8: 11-13.
- Tafti M, Franken P, Kitahama K. Localization of candidate genomic regions influencing paradoxical sleep in mice. Neuroreport. 1997; 8: 3755-3758. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9427364
- Franken P., Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci. 2001; 21: 2610-2621. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11306614
- Webb WB, Campbell SS. Relationships in sleep characteristics of identical and fraternal twins. Arch Gen Psychiatry. 1983; 40: 1093-1095. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6684906
- Boomsma DI, Van Someren EJ, Beem AL. Sleep during a regular week night: a twin- sibling study. Twin Res Hum Genet. 2008; 11: 538-545. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18828737
- De Gennaro L, Ferrara M, Vecchio F. An electroencephalographic fingerprint of human sleep. Neuroimage. 2005; 26: 114-122. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15862211
- Hur YM. Stability of genetic influence on morningness- eveningness: a cross- sectional examination of South Korean twins from preadolescence to young adulthood. J Sleep Res. 2007; 16: 17-23. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17309759
- Koskenvuo M, Hublin C, Partinen M. Heritability of diurnal type: a nationwide study of 8753 adult twin pairs. J Sleep Res. 2007; 16: 156-162. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17542945
- Drake CL, Friedman NP, Wright KP Jr, Roth T. Sleep reactivity and insomnia: genetic and environmental influences. Sleep. 2011; 34: 1179-1188. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21886355
- Watson NF, Goldberg J, Arguelles L, Buchwald D. Genetic and environmental influences on insomnia, daytime sleepiness, and obesity in twins. Sleep. 2006; 29: 645-649. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16774154
- Xiong L, Jang K, Montplaisir J. Canadian restless legs syndrome twin study. Neurology. 2007; 68: 1631-1633. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17485653
- Desai AV, Cherkas LF, Spector TD, Williams AJ. Genetic influences in self- reported symptoms of obstructive sleep apnoea and restless legs: a twin study. Twin Res. 2004; 7: 589-595. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15607009
- Hublin C, Kaprio J, Partinen M, Koskenvuo M. Sleep talking in twins: epidemiology and psychiatric comorbidity. Behav Genet. 1998; 28: 289-298.
- Hublin C, Kaprio J, Partinen M, Koskenvuo M. Sleep bruxism based on self- report in a nationwide twin cohort. J Sleep Res. 1998; 7: 61-67. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9613429
- Hublin C, Kaprio J, Partinen M, Koskenvuo M. Nocturnal enuresis in a nationwide twin cohort. Sleep. 1998; 21: 579-585. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9779517
- Toh KL, Jones CR, He Y. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001; 291: 1040-1043. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11232563
- Xu Y, Padiath QS, Shapiro RE. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005; 434: 640-644. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15800623
- Reid KJ, Chang AM, Dubocovich ML, Turek FW, Takahashi JS, et al. Familial advanced sleep phase syndrome. Arch Neurol. 2001; 58: 1089-1094. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11448298
- Jones CR, Campbell SS, Zone SE. Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med. 1999; 5: 1062-1065. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10470086
- Satoh K, Mishima K, Inoue Y, Ebisawa T, Shimizu T. Two pedigrees of familial advanced sleep phase syndrome in Japan. Sleep. 2003; 26: 416-417. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12841366
- Vanselow K, Vanselow JT, Westermark PO. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006; 20: 2660-2672. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16983144
- Chen P, Ijomone OM, Lee KH, Aschner M. Caenorhabditis elegans and its applicability to studies on restless legs syndrome. Adv Pharmacol. 2019; 84: 14-174. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31229169
- Chen S, Ondo WG, Rao S. Genomewide linkage scan identifies a novel susceptibility locus for restless legs syndrome on chromosome 9p. Am J Hum Genet 2004; 74: 876-885. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15077200
- Vogl FD, Pichler I, Adel S. Restless legs syndrome: epidemiological and clinicogenetic study in a South Tyrolean population isolate. Mov Disord. 2006; 21: 1189-1195. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16685686
- Caylak E. The genetics of sleep disorders in humans: narcolepsy, restless legs syndrome, and obstructive sleep apnea syndrome. Am J Med Genet A. 2009; 149: 2612-2626. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19876894
- Winkelmann J, Muller MB. Genetics of restless legs syndrome: a burning urge to move. Neurology. 2008; 70: 664-645. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18299518
- Winkelmann J, Polo O, Provini F. Genetics of restless legs syndrome (RLS): State-of-the-art and future directions. Mov Disord. 2007; 22: S449-S458. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17557342
- Lohmann HK, Neumann A, Kleensang A. Evidence for linkage of restless legs syndrome to chromosome 9p: are there two distinct loci? Neurology. 2008; 70: 686-694. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18032746
- Levchenko A, Provost S, Montplaisir JY. A novel autosomal dominant restless legs syndrome locus maps to chromosome 20p13. Neurology. 2006; 67: 900-901. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16966564
- Pichler I, Marroni F, Volpato CB. Linkage analysis identifies a novel locus for restless legs syndrome on chromosome 2q in a South Tyrolean population isolate. Am J Hum Genet. 2006; 79: 716-723. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16960808
- Desautels A, Turecki G, Montplaisir J. Identification of a major susceptibility locus for restless legs syndrome on chromosome 12q. Am J Hum Genet. 2001; 69: 1266-1270. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11704926
- Bonati MT, Ferini SL, Aridon P. Autosomal dominant restless legs syndrome maps on chromosome 14q. Brain. 2003; 126: 1485-1492. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12764067
- Kock N, Culjkovic B, Maniak S. Mode of inheritance and susceptibility locus for restless legs syndrome, on chromosome 12q. Am J Hum Genet. 2002; 71: 205-208. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12068378
- Liebetanz KM, Winkelmann J, Trenkwalder C. RLS3: fine-mapping of an autosomal dominant locus in a family with intrafamilial heterogeneity. Neurology. 2006; 67: 320-321. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16864828
- Desautels A, Turecki G, Montplaisir J. Restless legs syndrome:confirmation of linkage to chromosome 12q, genetic heterogeneity, and evidence of complexity. Arch Neurol. 2005; 62: 591-596. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15824258
- Sarayloo F, Dionne LA, Catoire H. Mineral absorption is an enriched pathway in a brain region of restless legs syndrome patients with reduced MEIS1 expression. PLoS One. 2019; 14: e0225186. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31725784
- Sarayloo F, Dion PA, Rouleau GA. MEIS1 and Restless Legs Syndrome: A Comprehensive Review. Front Neurol. 2019; 10: 935. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31551905
- Salminen AV, Lam DD, Winkelmann J. Role of MEIS1 in restless legs syndrome: From GWAS to functional studies in mice. Adv Pharmacol. 2019; 84: 175-184. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31229170
- Levchenko A, Montplaisir JY, Dube MP. The 14q restless legs syndrome locus in the French Canadian population. Ann Neurol. 2004; 55: 887-891. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15174026
- Winkelmann J, Lichtner P, Putz B. Evidence for further genetic locus heterogeneity and confirmation of RLS-1 in restless legs syndrome. Mov Disord. 2006; 21: 28-33. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16124010
- Winkelmann J, Schormair B, Lichtner P. Genome- wide association study of restless legs syndrome identifies common variants in three genomic regions .Nat Genet. 2007; 39: 1000-1006. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17637780
- Xiong L, Dion P, Montplaisir J. Molecular genetic studies of DMT1 on 12q in French-Canadian restless legs syndrome patients and families. Am J Med Genet B Neuropsychiatr Genet. 2007; 144: 911-917. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17510944
- Stefansson H, Rye DB, Hicks A. A genetic risk factor for periodic limb movements in sleep. N Engl J Med. 2007; 357: 639-647. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17634447
- Tilch E, Schormair B, Zhao C. Identification of Restless Legs Syndrome Genes by Mutational Load Analysis. Ann Neurol. 2020; 87: 184-193. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31788832
- Karroum EG, Saini PS, Trotti LM, Rye DB. TOX3 gene variant could be associated with painful restless legs. Sleep Med. 2020; 65: 4-7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31706190
- Eiberg H, Berendt I, Mohr J. Assignment of dominant inherited nocturnal enuresis (ENUR1) to chromosome 13q. Nat Genet. 1995; 10: 354-356. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7670476
- Eiberg H, Shaumburg HL, Von Gontard A, Rittig S. Linkage study of a large Danish 4- generation family with urge incontinence and nocturnal enuresis. J Urol. 2001; 166: 2401-2403. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11696797
- Von GA, Eiberg H, Hollmann E. Molecular genetics of nocturnal enuresis: clinical and genetic heterogeneity. Acta Paediatr. 1998; 87: 571-578. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9641742
- Arnell H, Hjalmas K, Jagervall M. The genetics of primary nocturnal enuresis: inheritance and suggestion of a second major gene on chromosome 12q. J Med Genet. 1997; 34: 360-365. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9152831
- Deen PM, Dahl N, Caplan MJ. The aquaporin- 2 water channel in autosomal dominant primary nocturnal enuresis. J Urol. 2002; 167: 1447-1450. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11832768
- Eiberg H. Total genome scan analysis in a single extended family for primary nocturnal enuresis: evidence for a new locus (ENUR3) for primary nocturnal enuresis on chromosome 22q11. Eur Urol. 1998; 33: 34-36. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9599735
- Ece A, Coşkun S, Şahin C, Tan I, Karabel D, et al. BDNF and NGF gene polymorphisms and urine BDNF-NGF levels in children with primary monosymptomatic nocturnal enuresis. J Pediatr Urol. 2019; 15: 255.e1-255.e7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30981636
- Yu B, Chang N, Lu Y, Ma H, Liu N, et al. Effect of DRD4 receptor -616 C/G polymorphism on brain structure and functional connectivity density in pediatric primary nocturnal enuresis patients. Sci Rep. 2017; 7: 1226. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28450726
- Dai XM, Ma HW, Lu Y, Pan XX. Relationship between dopamine D4 receptor gene polymorphisms and primary nocturnal enuresis. Zhongguo Dang Dai Er Ke Za Zhi. 2008; 10: 607-610. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18947481
- Fatouh AA, Motawie AA, Abd Al-Aziz AM. Anti-diuretic hormone and genetic study in primary nocturnal enuresis. J Pediatr Urol. 2013; 9: 831-837. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23246575
- Wei CC, Wan L, Lin WY, Tsai FJ. Rs 6313 polymorphism in 5-hydroxytryptamine receptor 2A gene association with polysymptomatic primary nocturnal enuresis. J Clin Lab Anal. 2010; 24: 371-375. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21089166
- Wisor JP, O’Hara BF, Terao A. A role for cryptochromes in sleep regulation. BMC Neurosci. 2002; 3: 20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12495442
- Franken P, Dudley CA, Estill SJ. NPAS2 as a transcriptional regulator of non- rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci USA. 2006; 103: 7118-7123. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16636276
- Laposky A, Easton A, Dugovic C. Deletion of the mammalian circadian clock gene BMAL1/ Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep. 2005; 28: 395-409. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16171284
- Katzenberg D, Young T, Finn L. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998; 21: 569-576. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9779516
- Mishima K, Tozawa T, Satoh K. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet B Neuropsychiatr Genet. 2005; 133B: 101-104. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15578592
- Morris AR, Stanton DL, Roman D, Liu AC. Systems Level Understanding of Circadian Integration with Cell Physiology. J Mol Biol. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32061938
- Hor CN, Yeung J, Jan M, et al. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci USA. 2019; 116: 25773-25783. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31776259
- Charrier A, Olliac B, Roubertoux P, Tordjman S. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders. Int J Mol Sci. 2017; 18: 938. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28468274
- Von Schantz M, Archer SN. Clocks, genes and sleep. J R Soc Med. 2003; 96: 486-489. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14519724
- Landgraf D, Shostak A, Oster H. Clock genes and sleep. Pflugers Arch. 2012; 463: 3-14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21833490
- Comasco E, Nordquist N, Göktürk C. The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci. 2010; 115: 41-48. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20187847
- Inter-Individual Differences In Habitual Sleep Timing and Entrained Phase of Endogenous Circadian Rhythms of BMAL1, PER2 and PER3 mRNA in Human Leukocytes. Sleep. 2008; 31: 608-617. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18517031
- Holst SC, Bersagliere A, Bachmann V. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci. 2014; 34: 566-573. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24403155
- Rhodes JA, Lane JM, Vlasac IM, Rutter MK, Czeisler CA, et al. Association of DAT1 genetic variants with habitual sleep duration in the UK Biobank. Sleep. 2019; 42: zsy193. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30299516
- Satterfield BC, Wisor JP, Schmidt MA, Van Dongen HPA. Time-on-Task Effect During Sleep Deprivation in Healthy Young Adults Is Modulated by Dopamine Transporter Genotype. Sleep. 2017; 40: zsx167. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29029252
- Holst SC, Müller T, Valomon A, Seebauer B, Berger W, et al. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation. Sci Rep. 2017; 7: 45982. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28393838
- Costa A, Riedel M, Muller U. Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta- analysis of human single photon emission computed tomography studies. Synapse. 2011; 65: 998-1005. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21404331
- Dauvilliers Y, Neidhart E, Lecendreux M. MAO- A and COMT polymorphisms and gene effects in narcolepsy. Mol Psychiatry. 2001; 6: 367-372. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11443519
- Brummett BH, Krystal AD, Siegler IC. Associations of a regulatory polymorphism of monoamine oxidase- A gene promoter (MAOA- uVNTR) with symptoms of depression and sleep quality. Psychosom Med. 2007; 69: 396-401. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17585061
- Desautels A, Turecki G, Montplaisir J. Evidence for a genetic association between monoamine oxidase A and restless legs syndrome. Neurology. 2002; 59: 215-219. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12136060
- Koch H, Craig I, Dahlitz M. Analysis of the monoamine oxidase genes and the Norrie disease gene locus in narcolepsy. Lancet. 1999; 353: 645-646. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10030338
- Kozochkin DA, Manukhina EB, Downey HF. The role of microsomal oxidation in the regulation of monoamine oxidase activity in the brain and liver of rats. Gen Physiol Biophys. 2017; 36: 455-464. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28653655
- Wang Z, Chen L, Zhang L, Wang X. Paradoxical sleep deprivation modulates depressive-like behaviors by regulating the MAOA levels in the amygdala and hippocampus. Brain Res. 2017; 1664: 17-24. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28365314
- Ozen F, Yegin Z, Yavlal F, Saglam ZA, Koc H, et al. Lack of association between MAOA-uVNTR variants and excessive daytime sleepiness. Neurol Sci. 2017; 38: 769-774. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28181067
- Joëlle A. Sleep and waking in mutant mice that do not express various proteins involved in serotonergic neurotransmission such as the serotonergic transporter, monoamine oxidase A, and 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C and 5-HT7 receptors Serotonin and Sleep. Molecular, Functional and Clinical Aspects. 2008.
- Retey JV, Adam M, Honegger E. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci USA. 2005; 102: 15676-15681. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16221767
- Bachmann V, Klaus F, Bodenmann S. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex. 2012; 22: 962-970. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21734253
- Radulovacki M. Role of adenosine in sleep in rats. Rev Clin Basic Pharm. 1985; 5: 327-339. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3916307
- Porkka-Heiskanen T. Adenosine in sleep and wakefulness. Ann Med. 1999; 31: 125-129. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10344585
- Mazzotti DR, Guindalini C, de Souza AA. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLoS One. 2012; 7: e44154. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22952909
- Mackiewicz M, Nikonova EV, Bell CC. Activity of adenosine deaminase in the sleep regulatory areas of the rat CNS. Brain Res Mol Brain Res. 2000; 80: 252-255. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11038259
- Bachmann V, Klein C, Bodenmann S. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep. 2012; 35: 335-344. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22379239
- Furihata R, Saitoh K, Otsuki R. Association between reduced serum BDNF levels and insomnia with short sleep duration among female hospital nurses. Sleep Med. 2019; 68: 167-172. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32044553
- Flores KR, Viccaro F, Aquilini M. Protective role of brain derived neurotrophic factor (BDNF) in obstructive sleep apnea syndrome (OSAS) patients. PLoS One. 2020; 15: e0227834. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31951637
- Rahmani M, Rahmani F, Rezaei N. The Brain-Derived Neurotrophic Factor: Missing Link between Sleep Deprivation, Insomnia, and Depression. Neurochem Res. 2020; 45: 221-231. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31782101
- Cullen T, Thomas G, Wadley AJ. Sleep Deprivation: Cytokine and Neuroendocrine Effects on Perception of Effort. Med Sci Sports Exerc. 2019. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31764462
- Tchekalarova J, Kortenska L, Ivanova N, Atanasova M, Marinov P. Agomelatine treatment corrects impaired sleep-wake cycle and sleep architecture and increases MT1 receptor as well as BDNF expression in the hippocampus during the subjective light phase of rats exposed to chronic constant light. Psychopharmacology (Berl). 2020; 237: 503-518. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31720718
- Sun W, Li J, Cui S, Luo L, Huang P, et al. Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro. 2019; 6: 0165-0219. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31585927
- Mahboubi S, Nasehi M, Imani A, Sadat-Shirazi MS, Zarrindast MR, et al. Benefit effect of REM-sleep deprivation on memory impairment induced by intensive exercise in male wistar rats: with respect to hippocampal BDNF and TrkB. Nat Sci Sleep. 2019; 11: 179-188. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31576186
- Sweeten BLW, Sutton AM, Wellman LL, Sanford LD. Predicting stress resilience and vulnerability: brain-derived neurotrophic factor and rapid eye movement sleep as potential biomarkers of individual stress responses. Sleep. 2020; 43: 199. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31556950
- R Staats. Regulation of brain-derived neurotrophic factor (BDNF) during sleep apnoea treatment. Thorax. 2005; 60: 688-692. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16061712
- Karen S, Edith HT, Anne E. BDNF in sleep, insomnia, and sleep deprivation. Annals of Medicine. 2016; 48: 42-51. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26758201
- Duncan WC, Sarasso S, Ferrarelli F. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013; 16: 301-311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22676966
- Medori R, Montagna P, Tritschler HJ, LeBlanc A, Cortelli P, et al. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology. 1992; 42: 669-670. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1347910
- Monari L, Chen SG, Brown P, Parchi P, Petersen RB, et al. Fatal familial insomnia and familial Creutzfeldt– Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci U S A. 1994; 91: 2839-2842. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7908444
- da Luz MHM, Pino JMV, Santos TG, Antunes HKM, Martins VR, et al. Sleep deprivation regulates availability of PrPC and Aβ peptides which can impair interaction between PrPC and laminin and neuronal plasticity. J Neurochem. 2020; e14960. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31950499
- He R, Hu Y, Yao L, Tian Y, Zhou Y, et al. Clinical features and genetic characteristics of two Chinese pedigrees with fatal family insomnia. Prion. 2019; 13: 116-123. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31122137
- Abu-Rumeileh S, Redaelli V, Baiardi S, Mackenzie G, Windl O, et al. Sporadic Fatal Insomnia in Europe: Phenotypic Features and Diagnostic Challenges. Ann Neurol. 2018; 84: 347-360. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30048013
- Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, et al. Fatal familial insomnia and familial Creutzfeldt– Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992; 258: 806-808. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1439789
- Bodenmann S, Hohoff C, Freitag C, Deckert J, Rétey JV, et al. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br J Pharmacol. 2012; 165: 1904-1913. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21950736
- Retey JV, Adam M, Khatami R, Luhmann UF, Jung HH, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007; 81: 692-698. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17329997
- Bodenmann S, Xu S, Luhmann UF, Arand M, Berger W, et al. Pharmacogenetics of modafinil after sleep loss: catechol- O- methyltransferase genotype modulates waking functions but not recovery sleep. Clin Pharmacol Ther. 2009; 85: 296-304. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19037200
- Bodenmann S, Landolt HP. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. Sleep. 2010; 33: 1027-1035. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20815183
- Goel N, Banks S, Lin L. Catechol- O- methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss. PLoS One. 2011; 6: e29283. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22216231
- Wieczorek S, Gencik M, Rujescu D, Tonn P, Giegling I, et al. TNFA promoter polymorphisms and narcolepsy. Tissue Antigens. 2003; 61: 437-442. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12823767
- Hohjoh H, Nakayama T, Ohashi J. Significant association of a single nucleotide polymorphism in the tumor necrosis factor- alpha (TNF- alpha) gene promoter with human narcolepsy. Tissue Antigens. 1999; 54: 138-145. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10488740
- Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD, et al. Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep. 2010; 33: 695-701. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20469812
- Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep. 2003; 26: 413-415. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12841365
- Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001; 2: 342-346. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11306557
- Goel N, Banks S, Mignot E, Dinges DF. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One. 2009; 4: e5874. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19516903
- Groeger JA, Viola AU, Lo JC. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep. 2008; 31: 1159-1167. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18714788
- Viola AU, Archer SN, James LM, Groeger JA, Lo JC. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007; 17: 613-618. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17346965
- Hohjoh H, Terada N, Kawashima M, Honda Y, Tokunaga K. Significant association of the tumor necrosis factor receptor 2 (TNFR2) gene with human narcolepsy. Tissue Antigens. 2000; 56: 446-448. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11144293
- Chen YH, Huang YS, Chen CH. Increased plasma level of tumor necrosis factor α in patients with narcolepsy in Taiwan. Sleep Med. 2013; 14: 1272-1276. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24157100
- Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000; 6: 991-997. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10973318
- Latorre D, Kallweit U, Armentani E, Foglierini M1, Mele F, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018; 562: 63-68. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30232458
- Takenoshita S, Sakai N, Chiba Y, Matsumura M, Yamaguchi M, et al. An overview of hypocretin based therapy in narcolepsy. Expert Opin Investig Drugs. 2018; 27: 389-406. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29623725
- Buhr A, Bianchi MT, Baur R. Functional characterization of the new human GABA A receptor mutation β 3 (R192H). Hum Genet. 2002; 111: 154-160. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12189488
- Wisden W, Yu X, Franks NP. GABA Receptors and the Pharmacology of Sleep. Handb Exp Pharmacol. 2019; 253: 279-304. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28993837
- Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro. 2016; 3: 0077-0116. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27294196
- Felsing DE, Anastasio NC, Miszkiel JM, Gilbertson SR, Allen JA, et al. Biophysical validation of serotonin 5-HT2A and 5-HT2C receptor interaction. PLoS One. 2018; 13: e0203137. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30157263
- Gao X, Ge H, Jiang Y, Lian Y, Zhang C, et al. Relationship between Job Stress and 5-HT2A Receptor Polymorphisms on Self-Reported Sleep Quality in Physicians in Urumqi (Xinjiang, China): A Cross-Sectional Study. Int J Environ Res Public Health. 2018; 15: 1034. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29883419
- Zhao Y, Tao L, Nie P, Lu X, Xu X, et al. Association between 5- HT 2A receptor polymorphisms and risk of obstructive sleep apnea and hypopnea syndrome: a systematic review and meta- analysis. Gene. 2013; 530: 287-294. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23988500
- Wu Y, Liu HB, Ding M, Liu JN, Zhu XF, et al. Association between the −1438G/ A and T102C polymorphisms of 5- HT 2A receptor gene and obstructive sleepapnea:a meta- analysis. Mol Biol Rep. 2013; 40: 6223-6231. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24065538
- Van Dalfsen JH, Markus CR. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the sleep-promoting effects of tryptophan: A randomized placebo-controlled crossover study. J Psychopharmacol. 2019; 33: 948-954. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31237183
- Barclay NL, Eley TC, Mill J. Sleep quality and diurnal preference in a sample of young adults: associations with 5HTTLPR, PER3, and CLOCK 3111. Am J Med Genet B Neuropsychiatr Genet. 2011; 156: 681-690. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21714069
- Brummett BH, Krystal AD, Ashley-Koch A, Kuhn CM, Züchner S, et al. Sleep quality varies as a function of 5- HTTLPR genotype and stress. Psychosom Med. 2007; 69: 621-624. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17766685
- Carskadon MA, Sharkey KM, Knopik VS, McGeary JE. Short sleep as an environmental exposure: a preliminary study associating 5- HTTLPR genotype to self- reported sleep duration and depressed mood in first-year university students. Sleep. 2012; 35: 791-796. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22654198
- Deuschle M, Schredl M, Schilling C, Wüst S, Frank J, et al. Association between a serotonin transporter length polymorphism and primary insomnia. Sleep. 2010; 33: 343-347. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20337192